Bridging Workflow and Data Provenance Using Strong Links

نویسندگان

  • David Koop
  • Emanuele Santos
  • Bela Bauer
  • Matthias Troyer
  • Juliana Freire
  • Cláudio T. Silva
چکیده

As scientists continue to migrate their work to computational methods, it is important to track not only the steps involved in the computation but also the data consumed and produced. While this provenance information can be captured, in existing approaches, it often contains only weak references between data and provenance. When data files or provenance are moved or modified, it can be difficult to find the data associated with the provenance or to find the provenance associated with the data. We propose a persistent storage mechanism that manages input, intermediate, and output data files, strengthening the links between provenance and data. This mechanism provides better support for reproducibility because it ensures the data referenced in provenance information can be readily located. Another important benefit of such management is that it allows caching of intermediate data which can then be shared with other users. We present an implemented infrastructure for managing data in a provenance-aware manner and demonstrate its application in scientific projects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provenance Explorer - Customized Provenance Views Using Semantic Inferencing

This paper presents Provenance Explorer, a secure provenance visualization tool, designed to dynamically generate customized views of scientific data provenance that depend on the viewer’s requirements and/or access privileges. Using RDF and graph visualizations, it enables scientists to view the data, states and events associated with a scientific workflow in order to understand the scientific...

متن کامل

Provenance in Scientific Workflow Systems

The automated tracking and storage of provenance information promises to be a major advantage of scientific workflow systems. We discuss issues related to data and workflow provenance, and present techniques for focusing user attention on meaningful provenance through “user views,” for managing the provenance of nested scientific data, and for using information about the evolution of a workflow...

متن کامل

Provenance Collection Support in the Kepler Scientific Workflow System

In many data-driven applications, analysis needs to be performed on scientific information obtained from several sources and generated by computations on distributed resources. Systematic analysis of this scientific information unleashes a growing need for automated data-driven applications that also can keep track of the provenance of the data and processes with little user interaction and ove...

متن کامل

SGProv: Summarization Mechanism for Multiple Provenance Graphs

Scientific workflow management systems (SWfMS) are powerful tools in the automation of scientific experiments. Several workflow executions are necessary to accomplish one scientific experiment. Data provenance, typically collected by SWfMS during workflow execution, is important to understand, reproduce and analyze scientific experiments. Provenance is about data derivation, thus it is typicall...

متن کامل

Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries

In scientific workflows, provenance data helps scientists in understanding, evaluating and reproducing their results. Provenance data generated at runtime can also support workflow steering mechanisms. Steering facilities for workflows is considered a challenge due to its dynamic demands during execution. To steer, for example, scientists should be able to suspend (or stop) a workflow execution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010